Deep Learning for Science School

July 20th - 24th, 2020

Lawrence Berkeley National Laboratory, Berkeley, CA


Hosted by Computing Sciences at Berkeley Lab, the school brings together researchers and engineers for lectures and tutorials on state-of-the-art deep learning methods and best practices for running deep learning on high performance computing systems. The sessions will cover both theory and practice, with emphasis on the latter. Attendees will gain an understanding of: what deep learning is, what type of problems it is good for, and how to choose, build and train (and deploy) at scale deep learning models for scientific applications. The school will also provide ample opportunities for the attendees to connect with fellow scientists with a shared interest for discussions on how the latest advances in learning algorithms can be used for their science.

Who should apply?

The Department of Energy, Office of Science community; domain scientists and engineers, postdocs and graduate students at Universities or National Labs with a strong interest in applying deep learning to scientific problems on high performance computing systems.


Feb 11th

Mar 4th

Mar 25th

April 15th

April 20th

July 20th

Applications open

Applications close

Admissions decisions are decided + registration opens for admitted applicants

Registration closes

Final decisions for applicants on waiting-list to be notified

First day of school